| 1 |
How does the concept of “model as a dataset” reshape traditional data-sharing practices in medical imaging?
|
|
|
|
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 2 |
Which analytical conclusion can be drawn about the trade-offs between physics-informed and statistical models?
|
|
|
|
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 3 |
Why is “mode collapse” considered a critical problem in GAN-based medical image synthesis?
|
|
|
|
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 4 |
Why are healthcare-specific metrics preferred over general-purpose metrics such as FID or SSIM?
|
|
|
|
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 5 |
What does the article identify as the key tension between privacy preservation and image fidelity?
|
|
|
|
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 6 |
Why is the FDA’s approval of synthetic MRI technology significant for future AI-generated data?
|
|
|
|
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 7 |
Which strategy would best mitigate demographic bias in generative models according to the article?
|
|
|
|
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 8 |
How do DDPMs exemplify versatility in healthcare image synthesis?
|
|
|
|
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 9 |
What analytical insight does the article provide about integrating AI-generated medical images into education and research?
|
|
|
|
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 10 |
Why is regional calibration essential when applying risk prediction models across countries?
|
|
|
|
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 11 |
What analytical conclusion can be drawn when comparing the China-PAR and Framingham models?
|
|
|
|
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 12 |
Based on CVD mortality data, what analytical inference can be made about Japan’s position compared to neighboring countries?
|
|
|
|
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 13 |
What analytical limitation arises when using Western-derived coefficients in East Asian models?
|
|
|
|
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 14 |
What policy implication can be derived from country-specific risk models?
|
|
|
|
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 15 |
If a model excludes socioeconomic variables, what analytical consequence might occur?
|
|
|
|
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 16 |
How might AI improve next-generation ASCVD risk prediction in East Asia?
|
|
|
|
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 17 |
What conclusion can be drawn from comparing Mongolia’s and South Korea’s CVD mortality rates?
|
|
|
|
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 18 |
What is the most logical future direction for improving ASCVD models across East Asia?
|
|
|
|
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 19 |
According to the “image generation trilemma” shown in the figure, what analytical conclusion can be drawn about the relative strengths of VAEs, GANs, and DDPMs in medical image synthesis?
|
|
|
|
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 20 |
Based on Figure, what analytical conclusion can be drawn regarding the distribution of cardiovascular disease (CVD) subtypes across East Asian countries?
|
|
|
|
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|