| 1 |
What is the primary goal of the article according to its introduction?
|
3. To explore advancements, applications, and challenges of generative AI in medical imaging |
|
provides a comprehensive overview of synthetic data in medical imaging and critically analyses the advancements, applications, and challenges of this field. โดยบทความที่อ่านได้มีจุดประสงค์เพื่อนำเสนอภาพรวมเกี่ยวกับการก้าวหน้า การประยุกต์ใช้งานและความท้าทายของ AI ในด้านการแพทย์
|
From the Summary and Introduction. This Viewpoint provides a comprehensive overview of synthetic data in medical imaging and critically analyses the advancements, applications, and challenges of this field.
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 2 |
How do generative AI models differ from traditional discriminative models in healthcare applications?
|
2. Generative models produce new data rather than only classify or interpret |
|
บทความนี้มีการอธิบายความแตกต่างของ generative artificial intelligence ว่าเป็นโมเดล generate new synthetic images with properties similar to the original data.
|
generate new synthetic images with properties similar to the original data.และยังบอกว่า generative models learn and store patterns and characteristics of the original data in their internal parameters (weights)
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 3 |
What is meant by the term “model as a dataset”?
|
3. Sharing trained model weights instead of raw data |
|
model as a dataset , ไม่ใช่การ raw data แต่คือ การใช้โมเดลที่ได้รับการอบรม ( trained model ) เป็นตัวแทนของข้อมูล
|
From Generative model it said that These trained weights contain a compressed version of the key features and relationships of the training data. Unlike traditional dataset sharing, which involves transferring actual images
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 4 |
Which statement correctly distinguishes physics-informed and statistical models?
|
3. Physics-informed models incorporate biological or physical principles |
|
Physics-informed models ใช้กฎหรือหลักการทางฟิสิกส์และชีววิทยาที่รู้มาก่อน
statistical models เรียนรู้ patern จากข้อมูล data driven ไม่อาศัยฟิสิกส์
|
From generative model it said that Physics-informed models are primarily rule-based approaches that incorporate domain-specific knowledge and physics principles through mathematical equations and explicit constraints to generate realistic and physically plausible data.
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 5 |
According to the article, what does the “image generation trilemma” describe?
|
2. Trade-offs among image diversity, quality, and speed |
|
จากภาพเป็น triangle diagram ที่ระบุ 3 มุม คือ diversity, quality, and speed
|
Statistical models encounter the generative artificial intelligence trilemma, which involves balancing high sample quality, comprehensive mode coverage, and rapid sampling rates
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 6 |
What is the Human Turing Test used for in medical image synthesis?
|
2. To assess realism of synthetic medical images by experts |
|
Human Turing test ใช้ให้ผู้เชี่ยวชาญดูภาพแล้วตัดสินว่าเป็นภาพจริงหรือสร้างจาก AI ใช้เพื่อประเมินความสมจริง ของภาพทางการแพทย์ที่ถูกสร้างขึ้นแบบ Synthetic
|
The human Turing test involves domain experts who are asked to discern between real and derived medical images.42 This assessment provides insights into the perceptual quality and realism of generated images, which is crucial for medical imaging,
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 7 |
Which of the following is NOT mentioned as a potential benefit of synthetic data in healthcare?
|
4. Eliminating all medical biases permanently |
|
the synthetic data ถูกสร้างมาเพื่อช่วย support
|
By leveraging the power of generative models, researchers can unlock unprecedented levels of data diversity, privacy preservation, and multifunctionality, changing the way dataset creation, utilisation, and disease modelling are approached.
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 8 |
What is one major ethical concern associated with generative AI in medical imaging?
|
2. Data copying and patient reidentification |
|
มันคือปัญหาด้านจริยธรรม ที่นำข้อมูลของผู้ป่วยไปเผยแพร่โดยไม่ต้องใจ ซึ่งนำความเสียหายมาให้ผู้ป่วย ( patient reidentification )
|
Generative models can inadvertently reveal sensitive patient information when they reproduce images that closely resemble the original data.
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 9 |
What regulatory precedent did the article cite for synthetic data technologies?
|
2. FDA clearance of synthetic MRI as image-processing software |
|
การที่ FDA อนุมัติเทคโนโลยี Synthetic MRI และจัดให้อยู่ในหมวด image-processing software ไม่ใช่ “อุปกรณ์การแพทย์แบบใหม่โดยสมบูรณ์
|
From the future direction Regulatory bodies, including the US Food and Drug Administration (FDA) and the European Medicines Agency, will play a crucial role in establishing frameworks for validating and approving synthetic data for clinical applications. Frameworks for evaluating synthetic medical imaging are already emerging, as evidenced by the FDA’s clearance of synthetic MRI technologies.77 These technologies were regulated as image processing software rather than as completely novel modalities,
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 10 |
What is the main purpose of the article?
|
4. To introduce new diagnostic imaging technologies |
|
บุว่า generative artificial intelligence และ synthetic datasets “have the potential to change medical imaging research and clinical practice” ซึ่งชี้ชัดว่าบทความมุ่งเน้นการเสนอเทคโนโลยีภาพทางการแพทย์รูปแบบใหม่ (image generation models) และแนวทางการนำไปใช้เชิงคลินิก ดังนั้นวัตถุประสงค์หลักของบทความจึงสอดคล้องกับข้อ 4 ซึ่งเกี่ยวข้องกับการนำเสนอเทคโนโลยีการสร้างภาพทางการแพทย์แบบใหม่
|
derivative synthetic datasets that closely resemble real-world data. This Viewpoint examines key aspects of synthetic data, focusing on its advancements, applications, and challenges in medical imaging.
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 11 |
Which of the following models was originally developed for a Western population?
|
1. Framingham Risk Score |
|
บุว่า generative artificial intelligence และ synthetic datasets “have the potential to change medical imaging research and clinical practice” ซึ่งชี้ชัดว่าบทความมุ่งเน้นการเสนอเทคโนโลยีภาพทางการแพทย์รูปแบบใหม่ (image generation models) และแนวทางการนำไปใช้เชิงคลินิก
|
The management of atherosclerotic cardiovascular disease (ASCVD) in the United States is currently based upon large epidemiological studies in primarily non-Hispanic White subjects.
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 12 |
Why might Western-based risk prediction models overestimate ASCVD risk in East Asian populations?
|
2. East Asians have lower baseline incidence of ASCVD |
|
แบบจำลองความเสี่ยง ASCVD ของตะวันตกมีความเสี่ยงสูงกว่าตะวันออก
|
ASCVD risk calculators, developed by the ACC/AHA, overestimate risk in Chinese, Koreans, and Japanese people.
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 13 |
What is the key advantage of the China-PAR model compared to Western-based models?
|
4. It was calibrated using national data representing diverse regions in China |
|
|
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 14 |
Which of the following variables is not typically included in ASCVD risk prediction models discussed in the article?
|
4. Genetic ancestry markers |
|
|
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 15 |
What is a major difference between the Suita Score and the Framingham Risk Score?
|
2. Suita Score was designed for a Japanese population using local epidemiological data |
|
|
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 16 |
According to the article, what is a potential benefit of developing East Asia–specific risk models?
|
3. They improve accuracy and reduce overestimation of risk |
|
|
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 17 |
Which factor was highlighted as influencing ASCVD risk differences among East Asian countries?
|
2. Cultural and dietary variations, such as salt intake and lifestyle |
|
|
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 18 |
What future direction does the article suggest for improving ASCVD risk prediction?
|
2. Using multimodal AI-based prediction integrated with regional data |
|
|
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 19 |
Which statement best explains the key difference in how VAEs, GANs, and DDPMs generate medical images according to the figure?
|
3. DDPMs iteratively remove noise through reverse diffusion rather than using encoder–decoder or discriminator structures. |
|
|
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 20 |
Which of the following best explains the trend shown in Figure comparing age-standardized and crude CVD mortality rates among East Asian countries?
|
3. Despite differences in age structures, Japan maintains low mortality rates in both measures, suggesting effective prevention and healthcare systems. |
|
|
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|