| 1 |
What is the primary goal of the article according to its introduction?
|
3. To explore advancements, applications, and challenges of generative AI in medical imaging |
|
ที่มาของคำตอบอยู่ในหัวข้องานิจัยและ abstract
|
ได้จากหัวข้องานวิจัยและ abstract
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 2 |
How do generative AI models differ from traditional discriminative models in healthcare applications?
|
2. Generative models produce new data rather than only classify or interpret |
|
generative AI สามารถสร้างข้อมูลใหม่ที่เหมือนจริงขึ้นมาได้แต่ discriminative models จะเน้นในด้านการ classify กับ predict
|
introduction และ use cases in medical imaging
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 3 |
What is meant by the term “model as a dataset”?
|
2. A dataset created manually by experts |
|
|
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 4 |
Which statement correctly distinguishes physics-informed and statistical models?
|
3. Physics-informed models incorporate biological or physical principles |
|
physics informed จะใช้หลักการทาง physical principle mathemetical equation ส่วน statistic models จะใช้การเรียนรู้จาก data patterns และ distributions
|
หน้า 2 ตั้งแต่คำว่า two broad categories ถึงหัวข้อ use cases in medical imaging
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 5 |
According to the article, what does the “image generation trilemma” describe?
|
2. Trade-offs among image diversity, quality, and speed |
|
image generation trilemma, which represents the trade offs between three key aspects of generative models: diversity quality and speed
|
figure 2
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 6 |
What is the Human Turing Test used for in medical image synthesis?
|
2. To assess realism of synthetic medical images by experts |
|
human turing test provides insights into the perceptual quality and realism of generated image
|
human evaluation
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 7 |
Which of the following is NOT mentioned as a potential benefit of synthetic data in healthcare?
|
4. Eliminating all medical biases permanently |
|
biases in the source datasets could be propagated or amplified in the generated data.
|
panel 3
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 8 |
What is one major ethical concern associated with generative AI in medical imaging?
|
2. Data copying and patient reidentification |
|
generative models can inadvertently reveal sensitive patient information when they reproduce images that closely resemble the original data
|
panel 3
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 9 |
What regulatory precedent did the article cite for synthetic data technologies?
|
2. FDA clearance of synthetic MRI as image-processing software |
|
|
future direction
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 10 |
What is the main purpose of the article?
|
2. To compare and evaluate ASCVD risk prediction models in East Asia |
|
epidemiological studies ของ western ใช้ไม่ได้กับคนเอเชีย
|
abstract
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 11 |
Which of the following models was originally developed for a Western population?
|
1. Framingham Risk Score |
|
framingham risk score was developed for a western population และถ้านำไปใช้กับคนจีนจะทำให้ค่าประเมินสูงเกินจริง
|
หน้า 7
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 12 |
Why might Western-based risk prediction models overestimate ASCVD risk in East Asian populations?
|
2. East Asians have lower baseline incidence of ASCVD |
|
western have lower baseline risk ทำให้เมื่อใช้ PCE หรือ FRS ประเมิน จะประเมินคนเอเชียสูงเกินจริง
|
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 13 |
What is the key advantage of the China-PAR model compared to Western-based models?
|
4. It was calibrated using national data representing diverse regions in China |
|
ใช้ข้อมูลของคนในประเทศทำให้ประเมินได้แม่นยำขึ้น
|
ascvd risk prediction in China
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 14 |
Which of the following variables is not typically included in ASCVD risk prediction models discussed in the article?
|
3. Serum cholesterol |
|
|
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 15 |
What is a major difference between the Suita Score and the Framingham Risk Score?
|
2. Suita Score was designed for a Japanese population using local epidemiological data |
|
the suita score was chosen from 10 different published risk prediction score in Japan
|
ASCVD risk in Japan
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 16 |
According to the article, what is a potential benefit of developing East Asia–specific risk models?
|
3. They improve accuracy and reduce overestimation of risk |
|
การใช้ข้อมูลจากประเทศของตนเองจะทำให้การประเมินแม่นยำขึ้น
|
future direction and conclusion
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 17 |
Which factor was highlighted as influencing ASCVD risk differences among East Asian countries?
|
2. Cultural and dietary variations, such as salt intake and lifestyle |
|
lifestyle ของแต่ละประเทศไม่เหมือนกันส่งผลต่อความเสี่ยงในการเป็นโรค ASCVD ที่ต่างกัน
|
the impact of acculturation and environmental effect of ASCVD risk profiles
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 18 |
What future direction does the article suggest for improving ASCVD risk prediction?
|
3. Focusing only on cholesterol measurement |
|
|
futuer direction and conclusion
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 19 |
Which statement best explains the key difference in how VAEs, GANs, and DDPMs generate medical images according to the figure?
|
3. DDPMs iteratively remove noise through reverse diffusion rather than using encoder–decoder or discriminator structures. |
|
DDPMs generate data by reverse noise
|
figure 1
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
| 20 |
Which of the following best explains the trend shown in Figure comparing age-standardized and crude CVD mortality rates among East Asian countries?
|
3. Despite differences in age structures, Japan maintains low mortality rates in both measures, suggesting effective prevention and healthcare systems. |
|
|
figure 1
|
7 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|