1 |
Number of tablets = Desired dosage / stock strength หากมี 1500 mg ของ Calcium carbonate และต้องการ 750 mg ต่อเม็ดจะได้กี่เม็ด
|
5. 2 |
|
1500 mg/ 750mg = 2
|
Number of tablets = Desired dosage / stock strength
|
5 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
2 |
ให้สั่งยา 4 mg/kg / dose โดยที่ Weight = 130 Ibs
|
2. 236.4 mg/dose |
|
Dose (mg) = (4 mg/kg) * Weight (kg) = (4 mg/kg) * (58.967 kg) = 235.87 mg
|
First we change "Ibs" to "Kg": 1 Lg = 2.20462 ibs,
Secondly we know that weight = 130 Ibs / 2.20462 = 58.967 kg
then we calculate the dose by:
Dose (mg) = (4 mg/kg) * Weight (kg) = (4 mg/kg) * (58.967 kg) = 235.87 mg (approximately 236.4)
|
5 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
3 |
ต้องการจัดยา 2 g of amoxicillin โดยมี amoxicillin 500 – mg capsules อยากทราบว่าต้องให้กี่ capsule
|
4. 4 |
|
(2000/500 = 4)
|
We need amoxicillin 2 g , So we currently have amoxicillin capsules 500 – mg capsules, Using this formular: (2000/500 = 4)
|
5 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
4 |
ต้องการสั่งยา 0.3 mg SQ of ยา A โดยมี 1000 mcg/2 mL of ยา A
|
3. 0.6 mL |
|
(0.3 mg * (2 mL/1 mg) = 0.6 mL)
|
We need A-pill with 0.3 mg SQ, which we have A-pill with 1000 mcg/2 mL, and then we calculate by using this formula:
(0.3 mg * (2 mL/1 mg) = 0.6 mL).
|
5 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
5 |
หากเราค้นคว้าข้อมูลแล้วสามารถคาดการณ์สถิติตัวเลขที่จะเกิดขึ้นในอนาคตได้ ถือเป็น data analytics แบบใด
|
2. Predictive |
|
Predictive analytics works by using historical data to predict future events.
|
We use historical data of the numbers sets we have to build the mathematics model to predict the next sets of the number.
|
5 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
6 |
จาก graph หาก R =5 A = ?
The infection attack rate is the total proportion of the population that is eventually infected during the epidemic, and it is denoted by A. This infection attack rate is completely determined by the reproduction number R and the contact process that describes who contacts whom. To illustrate the basic shape of the relation between the reproduction number R and the infection attack rate A. We suppose that infectious contacts are made at random
This provides us with a simple and robust relation that indicates what would happen if a new infection were to hit a completely susceptible population: if the
|
2. 0.9 |
|
From the given above X axis of the graph is Reproduction number R which is = 5, and Y-Axis of the graph is Infection Attack Rate A which is = 0.9
|
The graph above describes the Relative between "Infection Attack Rate A" and "Reproduction number R"
|
5 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
7 |
จากตาราง facilitators คืออะไร
|
3. ตัวช่วยให้ใช้ predictive model ง่ายขึ้น |
|
From the paragraph given above show us "How to present the model predictions" that help us create Predictive model easier.
|
From the paragraph given above show us "How to present the model predictions" that help us create Predictive model easier.
|
5 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
8 |
จากกราฟอยากทราบว่า Comparison of observed and ANN model forecasted values of daily AQI in (a) Summer, (b) Monsoon, (c) Post Monsoon and (d) Winter seasons during the year 2006.
Math model เกี่ยวกับเรื่องใด
|
2. Air pollution |
|
AQI stands for Air Quality Index.
|
The graph given above refer to (a) Summer, (b) Monsoon, (c) Post Monsoon and (d) Winter seasons during the year 2006.
|
5 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
9 |
อยากทราบว่าจากตารางด้านล่าง ค่า X ในตารางหมายถึงสิ่งใด
|
2. ความเข้มข้นของมลพิษ |
|
X = pollutant concentration
|
Because from the given image we can see that X = pollutant concentration that used to measure PM2.5
|
5 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
10 |
จากข้อความ P คือค่าอะไร
Previous studies that applied the IER model in the analysis of ambient air pollution-related disease burden only focused on four specific diseases, which are IHD, stroke, COPD, and LC, because the development of the IER model relies to a great extent on the available RR information of these diseases, The IER model was increasingly used to estimate the attributable mortality using the result of calculated RR. Previous study has evaluated the global PM2.5 concentration-mortality relationships by using the IER model outputs. By applying the estimated relative risk (R), the premature mortality (M) for a specific disease outcome in a population is measured using Equation 3, with P and I indicating population and regional average annual disease mortality rate (also known as baseline mortality rate), respectively.
M = P x I x (1-( 1)/R)
|
2. จำนวนประชากร |
|
From the formular the question given above we know that M is used to measure premature mortality.
|
“P” represents the population, and “I” indicates the regional average annual disease mortality rate (also known as baseline mortality rate).
|
10 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
11 |
จงอธิบายและยกตัวอย่างการใช้ calculus ในการผ่าตัด
|
Remove kidney stones. |
|
To remove them, doctors may use a procedure called percutaneous nephrolithotomy.
|
To perform this procedure safely and effectively, doctors need to use calculus to calculate the optimal size, shape and location of the incision, as well as the angle and trajectory of the tube.
|
10 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
12 |
math model และ Physical therapy มีความเกี่ยวข้องกันอย่างไร
|
Math models can also be used to design new devices or interventions for physical therapy. |
|
Example of using math models with Physicals therapy:
prosthetics, orthotics or exoskeletons.
|
Math model is a simplified representation of a real-world phenomenon using mathematical equations.
Physical therapy is a branch of health care that focuses on improving the function, movement and quality of life of people with injuries.
|
10 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
13 |
จากบทความ Mathematical Models in Infectious Disease Epidemiology จงเสนอแนะวิธีคำนวณยาในการรักษาโรค smallpox
|
Vaccination with replication-competent smallpox vaccines |
|
Because from the given articles Infectious Disease Epidemiology is a way of estimating how a drug moves.
|
Vaccination with replication-competent smallpox vaccines can prevent or lessen the severity of disease if given within 2 to 3 days of initial exposure.
|
10 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
14 |
จงหา math model ที่จะมีประโยชน์กับกายภาพบำบัดของผู้ป่วย stroke
|
The Predict Recovery Potential (PREP) algorithm. |
|
This algorithm combines clinical measures and biomarkers to predict upper limb recovery potential for individual stroke patients.
|
The algorithm combines clinical measures and neurophysiological and neuroimaging biomarkers that are sensitive to corticomotor pathway integrity to predict likely upper limb functional outcome.
|
10 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
15 |
จงอธิบายเรื่อง math model กับ drug diffusion through the blood
|
Is a way of estimating how a drug moves. |
|
There are different types of math models depending on how the drug is administered.
|
A math model for drug diffusion through the blood is a way of estimating how a drug moves from one part of the body to another after it is taken. There are different types of math models depending on how the drug is administered (orally, intravenously, etc.) and what factors affect its absorption and elimination.
|
10 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
16 |
จงอธิบายว่า Noyers whiter equation เกี่ยวข้องกับ drug release อย่างไร
|
The Noyes-Whitney equation describes the rate of dissolution of a solid substance into a solvent. |
|
It can be used to model drug release from a variety of drug delivery systems such as tablets, pellets, implants and microparticles.
|
formula for this equation is dC/dt = (DS/Vh)(Cs - C) where C represents the concentration of dissolved substance at time t, Cs represents the solubility concentration of the substance, D is diffusion coefficient, S is surface area and Vh is volume of solvent.
|
10 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
17 |
จงยกตัวอย่าง math model ที่ใช้ในเรื่อง tissue reconstruction
|
They can be used to simulate scenarios ranging from tissue oxygenation to tumor encapsulation. |
|
Mathematical models can be used to represent complex dynamics in soft tissue.
|
Example is using mathematical models to design optimized scaffolds for tissue engineering.
|
10 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
18 |
จงอธิบายเรื่อง Integrated exposure response model
|
Is a model that integrates exposures to PM 2.5 |
|
Because PM2.5 risk can be measure from an Integrated Exposure-Response (IER) model
|
An Integrated Exposure-Response (IER) model is a model that integrates exposures to PM 2.5 from different combustion types such as Ambient Air Pollution (AAP), Second Hand Tobacco Smoke (SHS), Household Air Pollution (HAP), and Active Smoking (AS).
|
10 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
19 |
Math model สามารถนำมาประยุกต์ใช้กับ patient diagnosis
|
For example, they can be used with epidemiologic research. |
|
Epidemiologic research can be use by planning and evaluation of preventive and control programs.
|
Mathematical models can be used throughout the epidemiological research process. Initially, they may help refine study questions by visually expressing complex systems, directing literature searches and identifying sensitive variables.
|
10 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|
20 |
จงยกตัวอย่าง Math model ที่ใช้ในการวิเคราะห์ข้อมูลทางการแพทย์
|
For example, Statistical learning models |
|
These models can identify patterns in data and diagnose risk factors that increase the chance of these diseases.
|
Statistical learning models can be used to investigate the prognosis of medical data such as breast cancer, heart disease and prostate cancer.
|
10 |
-.50
-.25
+.25
เต็ม
0
-35%
+30%
+35%
|