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Generative artificial intelligence has emerged as a transformative force in medical imaging since 2022, enabling the
creation of derivative synthetic datasets that closely resemble real-world data. This Viewpoint examines key aspects of
synthetic data, focusing on its advancements, applications, and challenges in medical imaging. Various generative
artificial intelligence image generation paradigms, such as physics-informed and statistical models, and their potential
to augment and diversify medical research resources are explored. The promises of synthetic datasets, including
increased diversity, privacy preservation, and multifunctionality, are also discussed, along with their ability to model
complex biological phenomena. Next, specific applications using synthetic data such as enhancing medical education,
augmenting rare disease datasets, improving radiology workflows, and enabling privacy-preserving multicentre col-
laborations are highlighted. The challenges and ethical considerations surrounding generative artificial intelligence,
including patient privacy, data copying, and potential biases that could impede clinical translation, are also addressed.
Finally, future directions for research and development in this rapidly evolving field are outlined, emphasising the
need for robust evaluation frameworks and responsible utilisation of generative artificial intelligence in medical
imaging.

Introduction
Generative artificial intelligence is a class of deep learning
models capable of creating content that diverges from
traditional discriminative models focused on interpretation
or decision making. Generative artificial intelligence has
seen rapid advancements over the past 3 years, with large
language models gaining substantial public attention after
the introduction of ChatGPT, a model trained on an exten-
sive corpus of text to create coherent and realistic responses to
userqueries.1 Large languagemodelshaveshownnoteworthy
capabilities in the understanding and generation of natural
language, paving the way for more advanced multimodal
models that combine textual, visual, and contextual
understanding. These large multimodal models have the
potential to aid various domains, including health care,
by integrating data from different input streams. Notable
examples of large language models in medicine are
Med-PaLM and Med-Gemini, which have shown prom-
ising results in tasks such as answering medical ques-
tions, summarising medical documents, and suggesting
potential differential diagnoses on the basis of patient
symptoms and test results. In addition, Med-Gemma and
MedImageInsight are models trained on different types
of medical images including radiology images (eg, chest
x-rays, mammograms, CT), as well as dermatology and
ophthalmology images, which allow end users to interact
with the model using both language and images (and are
thus known as multimodal foundation models). These
multimodal models provide unconventional visual ques-
tion answering ability and are able to learn from a few
examples to perform downstream classification tasks.2,3

Preliminary evidence suggests that generative artificial
intelligence in the realm of visual content has made

remarkable advancements with models such as DALL-E,
Stable Diffusion, Sora, and Veo, which excel in generating
realistic images and videos based on textual prompts.4–6

Although these models primarily process text as input,
with some using images for conditioning purposes, their
primary focus is on generating high-quality images.
Seminal works published since 2022 in medical imaging
have shown the potential of generative artificial intelligence
in creating realistic medical images (synthetic data),
suggesting new approaches for research and clinical
applications.7–10

This Viewpoint provides a comprehensive overview of
synthetic data inmedical imaging and critically analyses the
advancements, applications, and challenges of this field. To
this end, various image generation paradigms are exam-
ined, with the intention to assess how these generative
technologies are changing the landscape of medical
imaging research. The potential of these models and their
derivative synthetic datasets, particularly their ability to
augment and diversify medical research resources, are
explored, in addition to their benefits in terms of data
augmentation, anonymisation, and modelling biological
phenomena. Finally, the challenges of using synthetic data
are discussed, including the need for rigorous evaluation
metrics and ethical considerations, and potential research
directions are proposed that could substantially benefit the
field of medical imaging.

Synthetic datasets
Generative models
The field of synthetic data is still in its nascent stages,
with no consensus on a single, universally accepted defi-
nition as yet. This absence of a clear definition has led to
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inconsistencies in how the term is used and interpreted
across various contexts, which in turn can affect the repro-
ducibility and transparency of research involving synthetic
data.11 The Royal Society and The Alan Turing Institute put
forth a working definition of synthetic data in 2022, as data
that have been generated using a purpose-built mathemat-
icalmodel or algorithm,with theaimof solving a (set of) data
science task(s).12 This proposed definition emphasises the
functional and intentional aspects of synthetic data, focus-
ing on its strategic application in tackling complex scientific
challenges rather than simply mimicking the statistical
properties of the original data.
The advancement of generative artificial intelligence

introduces a new concept in data sharing, which we refer to
as a model as a dataset. In this concept, generative models
learn and store patterns and characteristics of the original
data in their internal parameters (weights).13 These trained
weights contain a compressed version of the key features
and relationships of the training data. Unlike traditional
dataset sharing, which involves transferring actual images,
sharing model weights provides an efficient alternative that
allows others to generate new synthetic images with prop-
erties similar to the original data. These synthetic datasets
have been shown to closely resemble the source data and
capture their distribution, including the relationship of
different anatomical features and their correlation with
different pathological processes.8,9

Two broad categories of generative models provide the
ability to generate synthetic datasets: physics-informed and
statistical models.
Physics-informed models are primarily rule-based

approaches that incorporate domain-specific knowledge
andphysics principles throughmathematical equations and
explicit constraints to generate realistic and physically
plausible data. Rather than learning the patterns directly
from data, these models encode expert knowledge and
known physics laws (eg, fluid dynamics, tissue biomech-
anics, or radiation physics) to simulate biological phenom-
ena. These models have been applied successfully in
medical imaging to simulate anatomical structures (such as
a shapemodel of the femoral bone), physiological processes
(such as blood flow dynamics in vascular structures), and
medical interventions (such as simulating the distribution
of the radiation dose in radiotherapy planning).14 Physics-
informed models offer high fidelity and interpretability but
might require extensive domain expertise and computational
resources.
In contrast to physics-informedmodels, statisticalmodels

learn fromdata patterns anddistributions (figure 1). Among
them, variational autoencoders (VAEs) function by com-
pressing data into a lower-dimensional representation, also
known as latent space, and then reconstructing the data,
thereby capturing the data distribution effectively.15

Generative adversarial networks (GANs) operate through a
dual-network system, in which a generator creates data
samples and a discriminator evaluates these data samples
and provides feedback to the generator.16 This synergy

continually enhances the quality and realism of the data
generated. Denoising diffusion probabilistic models
(DDPMs) introducenoise into an image and learn to reverse
this process, producing high-quality samples.17

Statistical models encounter the generative artificial
intelligence trilemma, which involves balancing high
sample quality, comprehensive mode coverage, and rapid
sampling rates (figure 2).18 VAEs are notable for their quick
sampling capabilities, sometimes resulting in lower sample
quality. GANs excel at generating high-quality samples but
might not always capture all data variations, leading to low
mode coverage, known asmode collapse. DDPMs stand out
for their ability to generate samples of exceptional quality
and extensive mode coverage, albeit at a slower sampling
rate. End users select the generative model that matches
their application of interest, balancing the desired image
quality and speed. For dataset generation purposes, the
priority typically shifts towards ensuring high image quality
and comprehensive mode coverage, often outweighing
concerns of sampling speed.

Use cases in medical imaging
Generative models and their synthetic datasets have
numerous applications in medical imaging (panel 1). One
well studied use case involves supplementing or replacing
real data to train deep learningmodels fordownstream tasks
such as classification or segmentation. Generated images
can be conditioned on class labels (eg, presence or absence
of pneumonia) or descriptive text (eg, right middle lobe
consolidation). Research has shown that images generated
by GANs and DDPMs can improve the performance of
downstream pathology classifiers substantially.7,19,30 Not-
ably, the classifier performance improves asmore synthetic
data are added to the real dataset. In some cases, a
sufficiently large pool of generated images can match the
performance benefit of real data, potentially opening new
avenues for data sharing whereby synthetic data acts as a
replacement of the original data.8 However, when training
and evaluating generative models, caution is required to
avoid distribution leakage (in which a patient is represented
in both training and test data), which could overestimate
performance improvements.8 Of note, repeatedly training
image generation models on the output of other generative
models (usually more than three iterations) risks mode
collapse, which degrades the quality of the final model.31

Generative models also excel at image transformations.
VAEs and GANs have long enabled low-dose CT image
denoising, eventually reducing radiation exposure for
patients.32,33 Of late, accelerated MRI techniques have been
used to reduce the scan time by 30%.34 Another image-to-
image transformation use case generates missing MRI
sequences, enabling training of downstream algorithms
requiring all four sequences: T1, T2, post-contrast T1, and
FLAIR.23,29 DDPMs have enabled inpainting, which involves
selectively adding or removing specific image parts on the
basis of criteria, without altering the context. For instance,
trained diffusion models can introduce brain tumour
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lesions in healthy brain MRIs or remove tumoural regions
by drawing on an image.24 Such edits can enrich under-
represented datasets and introduce rare conditions, such as
adding brain tumours to individuals with Alzheimer’s dis-
ease. A more advanced version of the inpainting technique
was developed to edit specific regions of a chest radiograph
using text prompts.26 The resulting edited imageswere used
to stress-test existingmodels—for example, removing chest
tubes from pneumothorax images to evaluate classifier
performance without this known confounder.35

Evaluating image quality
Evaluating the quality of generated images, which deter-
mines how these synthetic images are used, is crucial.
Various metrics have been proposed to quantify the quality
of generated images, both in the presence and absence of
ground truth references. These metrics can be broadly cat-
egorised into two groups: image metrics and text–image
metrics (panel 2).

Image metrics
When ground truth images are available—for example, in
tasks such as super resolution and denoising of medical
images—traditional metrics such as structural similarity
index and the peak signal-to-noise ratio can be used to
measure the similarity between the generated and reference
images.36,37 However, in the absence of ground truth—for
example, in class-conditioned image generation—alternative
metrics are required. For instance, classification accuracy
score trains a classification model on derived medical data
and evaluates its performance on real images, providing
insights into the domain adaptation capabilities of the
generation models.38

Another widely adopted metric is the inception score,
whichuses an inceptionnetwork pretrained on ImageNet to
evaluate class predictions for a set of generated samples.39

Fréchet inception distance (FID) compares the means and
covariances of features extracted by an ImageNet-pretrained
inception network between the generated and real sam-
ples.40 By accounting for the target distribution, FID pro-
vides a better estimate of image diversity than inception
score. Several variants and improvements of FID have been
proposed—eg, the kernel inception distance is a variant of
FID that enablesmetric calculation using a small number of
samples, unlike FID calculation, which requires generation
of a large number of samples and is resource intensive.41

One limitation of these metrics is that they depend on pre-
trained networks, and unlike natural images, no universally
acceptedmodel for feature extraction exists inmedical imaging.

Human evaluation
In addition to computational metrics, human evaluation
remains a gold standard for assessing the quality of gen-
erated medical images. The human Turing test involves
domain experts who are asked to discern between real and

derived medical images.42 This assessment provides
insights into the perceptual quality and realismof generated
images, which is crucial for medical imaging, in which
accuracy andfidelity areparamount.However, asperceptual
quality and realism are subjectivemeasures, a wide range of
participants with different experience levels should be
involved in the image evaluation process.43
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Figure 1: The architectures and key components of three popular statistical models used in image generation
(A) VAEs consist of an encoder that compresses the input data into a lower-dimensional latent representation and a
decoder that reconstructs the original data from the latent space. Themodel is trained tominimise the reconstruction
errorwhile also regularising the latent space to follow a previous distribution, typically a standard normal distribution.
This training enables the generation of new samples by sampling from the learned latent distribution and decoding
them. (B) GANs use a two-network architecture, with a generator that creates synthetic data samples and a
discriminator that distinguishes between real and generated samples. The generator aims to produce samples that are
indistinguishable from real data, whereas the discriminator provides feedback to guide the generator’s improvement.
Through an adversarial training process, the generator learns to capture the underlying data distribution, enabling the
creation of realistic samples. (C) DDPMsgenerate data by learning to reverse a noisingprocess. Themodel startswith a
sample from a simple distribution (eg, Gaussian noise) and iteratively denoises the sample using a learned Markov
chain. At each step, the model estimates the gradient of the data distribution and refines the sample accordingly. By
repeatedly applying this process, DDPMs can produce high-quality samples that closely resemble the training data.
The figure depicts the forward diffusion process that gradually adds noise to the data and the reverse diffusion process
that progressively denoises the sample to generate a clean output. DDPMs=denoising diffusion probabilistic models.
GANs=generative adversarial networks. VAEs=variational autoencoders.
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Text–image metrics
Although imagemetrics focus solely on the visual quality of
generated images, text–image metrics aim to measure the
alignment between the input text and the generated image.
These metrics are particularly relevant in medical image
generation tasks, in which the generated images need to
reflect the textual descriptions of medical conditions or
anatomical structures accurately. Metrics such as contrast-
ive language-image pretraining score (CLIPScore) and
bootstrapping language-image pretraining score (BLIP-
Score)measure the similarity between the input text and the
generated image, quantifying the degree of alignment
between the two modalities.44,45

Image–text matching is another crucial group of metrics
for evaluating the alignment between generated medical
images and their corresponding textual descriptions.
Compositional quality metrics assess this alignment by
decomposing the text and image into individual compo-
nents and measuring their correspondence, often using
object detection techniques.46,47 These metrics go beyond
overall visual similarity and focus on accurate representa-
tion of specific anatomical structures, pathologies, or med-
ical conditions mentioned in the text. By ensuring that the
generated images convey the intendedmedical information
accurately, compositional quality metrics can play a key role
in medical education and research.

Health-care-specific metrics
Evaluating synthetic medical images requires metrics tail-
ored to health-care needs, beyond general purpose tools
such as the structural similarity index or FID. Efforts are
underway to adapt existingmetrics formedical contexts. For
instance, researchers have begun replacing Image Net-
pretrainedmodels in FIDwith networks trained onmedical

datasets such as RadImageNet to create a medical FID,
which captures the statistical properties of radiology images
better.48 However, health-care-specific metrics remain an
active research area as disease classifiersmight relymore on
local features than global features.49 Similarly, anatomical
accuracy is being prioritised by developing measures that
use segmentation tools to ensure that crucial structures
(such as organs or lesions) are preserved in synthetic
images.50 These adaptations aim to address the limitations
of standard metrics, which often fail to reflect clinical
relevance or diagnostic utility.
A suggestednext step is to integrate clinical validationwith

these computational approaches. Human evaluations such
as the human Turing test already involve experts distin-
guishing real images from synthetic ones, offering insights
into the perceptual quality that is important formedical use.
For text-guided image generation, metrics such as CLIP-
Score arebeing refinedbyusingmedical foundationmodels
such as BioMedClip.51 Testing synthetic images in practical,
clinical tasks such as training classifiers for disease detec-
tion can further highlight their utility. Combining these
efforts could provide a robust, health-care-specific evalu-
ation, thereby ensuring that synthetic images meet both
technical and clinical standards for advancing medical
imaging research and practice.

Potentials and promises
Synthetic data generation and image generation models
hold immense promise for the future of medical imaging
research. By leveraging the power of generative models,
researchers can unlock unprecedented levels of data diver-
sity, privacy preservation, and multifunctionality, changing
the way dataset creation, utilisation, and disease modelling
are approached.

Increased dataset size and diversity
One of the key advantages of generating data via statistical
models lies in their ability to increase dataset size and
diversity. Preliminary evidence suggests that generative
models can be trained to disentangle specific associations
within data, allowing for the creation of novel combinations
that might not be readily available in real-world datasets.52,53

For instance, a model trained on brain MRI scans can
generate images with varying degrees of atrophy or lesion
load, independent of factors such as age or sex. Such
disentanglement enables training models to detect specific
pathologies without confounding the effects of other varia-
bles. As mentioned earlier, supplementing increased
dataset size with generated images could lead to enhanced
downstream model performance.8 Moreover, targeted
oversampling of minoritised sociodemographic groups or
patients diagnosedwith rare diseases through synthetic data
generation has been shown to close the fairness gap by
40%.22 Synthetic data generation closes this fairness gap by
facilitating an increase in dataset sizes that represent the
original dataset distribution for various subgroups.

Quality

Speed Diversity

Image
generation
trilemma

DDPM
sGANs

VAEs

Figure 2: The image generation trilemma, which represents the trade-offs
between three key aspects of generative models: diversity, quality, and speed
VAEs excel in generating diverse samples quickly but can compromise on image
quality. GANs strike a balance, providing good quality and diversity but can suffer
from mode collapse, thereby restricting the diversity. DDPMs prioritise high-
quality and diverse samples at the cost of a slow generation speed.
DDPMs=denoising diffusion probabilistic models. GANs=generative adversarial
networks. VAEs=variational autoencoders.
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Panel 1: Use cases of synthetic imaging datasets and image generation models in medicine and their findings

We performed a literature search using the following term combinations: "synthetic data" OR "VAE" OR "GAN*" OR "diffusion model*" AND "medical imag*" OR
"radiolog*" OR "dermatolog*" OR "patholog*", and selected a representative paper matching each type of synthetic data for inclusion.

Chambon et al (2022):7 Generating chest radiographs conditioned on input prompts
• Improved classifier performance by 5% when trained on combined synthetic and real data
• Increased classifier performance by 3% when trained solely on a larger synthetic dataset
• Enhanced text encoder representation for pneumothorax detection by 25% after fine-tuning

Pinaya et al (2022):9 Generating 3D brain MRIs and investigating the conditioning factors
• Enabled controlled generation of realistic 3D brain MRIs with adjustable age, sex, and structural parameters
• Generated a synthetic dataset of 100 000 brain images for public use

Frid-Adar et al (2018):19 Generating abnormal samples to tackle class imbalance in liver lesion detection on CT scans
• Increased liver lesion detection sensitivity from 78⋅6% to 85⋅7% using synthetic data augmentation
• Improved specificity from 88⋅4% to 92⋅4% with synthetic images
• Radiologists found synthetic images indistinguishable from real ones in blinded assessments

Khosravi et al (2024):8 Using synthetic chest radiographs to supplement real images to expand the training set of pathology classifiers
• Enhanced AUROC by up to 0⋅02 in internal and external test sets with ten times synthetic data supplementation
• Synthetic-trained classifiers matched the performance of real-data models using 33–50% fewer images
• Combining real and synthetic data improved AUROC of pathology classifiers from 0⋅76 to 0⋅80 in cross-source testing

Ktena et al (2024):20 Using synthetic images to increase the fairness of downstream classifiers on multiple modalities
• Reduced fairness gap by 44⋅6% in chest radiograph classifiers trained on synthetic and real images
• Improved out-of-distribution prediction accuracy by 7⋅7% across pathology slides
• Increased dermoscopy high-risk sensitivity by 63⋅5% and reduced fairness gaps by 7⋅5 times

Conte et al (2021):21 Creating missing brain MRI sequences for streamlined processing
• Boosted tumour segmentation Dice coefficient from 0⋅79 to 0⋅83 with synthetic MRI sequences

Rouzrokh et al (2022):22 Introducing and removing lesions from brain MRI slices
• Effectively inpainted (which involves selectively addingor removing specific image parts on the basis of criteria, without altering the context) tumour components,

random tumours, and healthy brain tissues using DDPMs

Khosravi et al (2024):23 Creating counterfactual pelvis radiographs from different race groups to evaluate disparities in large imaging datasets
• Identified racial disparities in prevalence of osteoarthritis between African American patients and White patients
• Highlighted dataset-scale disparities by means of synthetic counterfactual pelvis radiographs

Pérez-García et al (2023):24 Stress-testing image classifiers by creating counterfactuals to evaluate possible shortcuts and their effect on model performance
• Generated counterfactual datasets simulating acquisition, manifestation, and population shifts
• COVID-19 classifier accuracy dropped from 99⋅1% to 5⋅5% when COVID-19 features were removed
• Pneumothorax classifier accuracy dropped from 93⋅3% to 17⋅9% when chest tubes were artificially removed

Khosravi et al (2023):25 Using internal features of generative models for label-efficient pelvis radiograph segmentation
• Enhanced pelvis radiograph segmentation accuracy by 0⋅30–0⋅32 points using generative model features, using only 20 annotated samples

Rouzrokh et al (2024):26 Creating synthetic postoperative images of patients undergoing total hip arthroplasty
• Produced synthetic postoperative hip radiographs with a mean acetabular angle of 39⋅9◦ (±4⋅6), 99% within safe zones
• Synthetic radiographs scored higher validity (9⋅0±0⋅7) than real ones (7⋅9±1⋅1)

Yuan et al (2024):27 Imputing missing 3D brain MRIs in Alzheimer’s longitudinal studies conditioned on past or future scans
• Achieved SSIM of 0⋅895 (with skull) and 0⋅983 (skull removed), outperforming autoencoders (0⋅74 for with skull and 0⋅91 for skull removed) and naivemethods

(0⋅70 for with skull and 0⋅89 for skull removed)
• Reduced volumetric error rates from 0⋅14 (using conventional methods) to 0⋅05

(Continues on next page)
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Privacy preservation
Synthetic datasets offer a privacy-preserving solution to the
challenges of sharing and utilisation of data in medical
research.54 Generative artificial intelligence anonymises
sensitive patient information by generating realistic images
that mimic biological characteristics of real patient data
(both visually and in themodel feature space) without direct
replication of original data.55 Such anonymisation enables
the creation of datasets that can be shared and analysed
without compromising patient privacy,which further opens
up new avenues for collaborative research and facilitates the
development of robust, privacy-compliant artificial intelli-
gence models in medical imaging.

Versatility across tasks
Another key potential of image generation models,
especially DDPMs, lies in their multifunctional nature.

Generative models trained on medical images can be
adapted and repurposed for various tasks beyond sup-
plementing data; for example, features learned from an
unsupervised image generation model can be leveraged
for few-shot image segmentation, enabling accurate
delineation of anatomical structures or pathologies with
only 20 expert-annotated examples.27 The same model
without any further training can also be used for
inpainting to create diverse training samples.56 Similarly,
generative models without any fine-tuning after initial
training can be used for anomaly detection in medical
images.57,58 This versatility extends the value of the syn-
thetic datasets and their generator models, as a single
model can be used for multiple downstream applica-
tions, streamlining research workflows, and reducing
the need for task-specific data collection and model
development.

Panel 1 (continued from previous page)

Kyung et al (2024):28 Forecasting chest radiograph morphology on the basis of electronic health record data
• Achieved a weighted macro AUROC of 0⋅72 in predicting future chest x-ray pathologies, outperforming tabular-only classifiers and previous label baselines
• Maintained sex (AUROC 0⋅96) and age (0⋅45) correlations in synthetic images

Liu et al (2025):29 Forecasting tumour growth on the basis of baseline tumour characteristics and treatment plan
• SSIM of 0⋅92 and PSNR of 29⋅0 for multiparametric MRI generation, outperforming baseline models without treatment-aware conditioning
• Generated MRI quality remained high across different treatment-day ranges, with SSIM ranging from 0⋅88 to 0⋅94 depending on the treatment phase
• Tumour growth predictions were most reliable within a 4-month window, with the Dice similarity coefficient dropping from 0⋅85 to 0⋅46 as the time interval

extended from 0⋅5 months to greater than 24 months

3D=three dimensional. AUROC=area under the receiver operating characteristic curve. DDPMs=denoising diffusion probabilistic models. PSNR=peak signal-to-noise ratio. SSIM=structural similarity index.

Panel 2: Summary of image quality metrics based on use case for medical image generation

Image super resolution, denoising, and inpainting
• SSIM: assesses structural similarity between generated and reference images by considering luminance, contrast, and structure
• PSNR: measures the ratio between the maximum possible power of a signal and the power of corrupting noise between generated and reference images

Class-conditioned and unconditional image generation
• IS: compares class predictions and diversity of generated samples using an inception network pretrained on ImageNet
• FID: compares means and covariances of features extracted from generated and target distributions using an inception network pretrained on ImageNet
• KID: computes squared MMD between inception representations of generated and target distributions using an inception network pretrained on ImageNet

Domain adaptation, and class-conditioned image generation
• CAS: uses a classifier trained on derived medical images and evaluates performance on real images

Perceptual quality assessment, and realism evaluation
• Human Turing test: medical experts discern between real and derived images

Image generation from textual descriptions
• Segmentation-based metrics: volumetric analysis of different organs on generated images and comparing them with the input condition
• CLIPScore: computes cosine similarity between CLIP embeddings of text descriptions and generated images
• BLIPScore: computes cosine similarity between BLIP embeddings of text descriptions and generated images
• LLMScore: leverages an LLM for creating a detailed caption at the level of an image and different objects and compares the generated caption with the input text

descriptions

BLIP=bootstrapping language-image pretraining. CAS=classification accuracy score. CLIP=contrastive language-image pretraining. FID=Fréchet inception distance. IS=inception score. KID=kernel inception
distance. LLM=large language model. MMD=maximum mean discrepancy. PSNR=peak signal-to-noise ratio. SSIM=structural similarity index.
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Modelling complex biological phenomena
Advanced generative models can internalise complex bio-
logical phenomena through their training procedures,
enabling the intricate physiological processes to be mod-
elled and simulated.59 This internalised world model can be
leveraged for novel applications that extend beyond the
downstream tasks discussed in the previous section. One
striking example of this capability is the prediction of post-
operative imaging appearances. When trained on a large
corpus of paired prearthroplasty and postarthroplasty pelvic
radiographs, these models generated highly realistic post-
operative radiographs, simulating a well executed surgery.28

Remarkably, domain-expert surgeons evaluated the gen-
erated postoperative images as more robust and anatomic-
ally accurate than their real counterparts, highlighting the
potential of these models in serving as virtual surgical
planning tools and educational resources.28

Another compelling application of this internalised world
model is the prediction of disease progression.30 For
instance, when given an initial brain MRI scan and infor-
mation about the patient’s treatment regimen, advanced
DDPMs can generate a series of images that depict the
potential progression of a brain tumour over time.31 By

learning the complex interplay between disease character-
istics, treatment effects, and biological processes, these
models can provide valuable insights into patient prognosis
and aid clinical decision making.31

Challenges and considerations
Although derivative synthetic datasets and image gener-
ation models hold immense promise for medical imaging
research, several challenges and ethical considerationsneed
to be addressed to ensure their responsible and effective
utilisation. Panel 3 summarises these challenges and pro-
poses some future research directions to mitigate them.

Patient privacy and data copying
Although synthetic datasets can help to preserve patient
privacy by generating anonymised data, concerns regarding
potential data copying still exist.60 If a generative model is
trained on a specific dataset and can replicate images that
closely resemble the original data, then the model might
inadvertently reveal sensitive patient information. Copying
happens when multiple copies of the image or captions are
present in the dataset, which not only necessitates careful
data curation,61 but also raises concern about the degree of

Panel 3: Summaryof challenges, considerations, and future researchdirections for generative artificial intelligence and syntheticdatasets inmedical imaging

Data copying
Generative models can inadvertently reveal sensitive patient information when they reproduce images that closely resemble the original data.
Future research directions:
• Creating metrics to quantify the privacy risk of generated images
• Developing post-hoc data anonymisation methods
• Investigating the trade-off between image quality and privacy preservation

Identification of source dataset
Identifying specific datasets used to train generative models can be challenging, hindering the assessment of potential biases or limitations in the generated data.
Future research directions:
• Creating standardised reporting guidelines for synthetic medical imaging datasets
• Developing techniques for dataset fingerprinting in generative models
• Creating trusted third-party validation services for synthetic medical datasets
• Exploring methods for reverse-engineering model-training data

Interpretability and explainability
The complex nature of generativemodels makes understanding how these models learn and generate data a challenge. This understanding is necessary to build trust
in the model outputs.
Future research directions:
• Implementing uncertainty quantification methods for stochastic prediction models
• Creating clinically relevant interpretability metrics
• Developing interactive visualisation tools for clinicians to explore model decisions
• Investigating the integration of domain knowledge into model explanations

Potential biases
Biases in the source datasets could be propagated or amplified in the generated data, leading to skewed research findings or discriminatory applications.
Future research directions:
• Creating benchmarks for evaluating fairness in medical imaging generative models
• Establishing multi-institution collaboratives to create demographically balanced training data
• Investigating the effect of data augmentation on bias reduction
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anonymisation achieved in the training data and the
potential for reidentification. Unlike tabular data, medical
images contain patient-identifying information embedded
within the pixel values, thus posing unique challenges for
anonymisation. For instance, facial features in brain MRIs
or distinctive anatomical markers in radiographs might
enable reidentification evenwhen explicit patient identifiers
are removed.62,63

Researchers need to carefully assess the risk of data
copying and implement measures to mitigate this concern,
such as using differential privacy techniques or post-hoc
data anonymisation.64,65 Advancesmadeover the past 4 years
in privacy evaluation metrics for synthetic data, such as
membership inference attacks and similarity scores
between real and generated samples, can help to quantify
privacy risks.Additionally, emerging standards for synthetic
content provenance, including the Coalition for Content
Provenance andAuthenticity (C2PA) and Google’s SynthID,
have been developed to label artificial intelligence-generated
content, addressing both transparency and intellectual
property concerns.66

Identification of source dataset and disclosure
Transparency regarding the source datasets used to train
generative models is crucial in ensuring the integrity and
reproducibility of research findings. However, identifying
the specific training datasets can be challenging, especially
whenmodels are trained onmultiple proprietary sources or
when researchers use pretrained models without full
knowledge of their training data.67 This insufficient trans-
parency can hinder the ability to assess potential biases or
limitations in the generated data. To address this gap,
researchers should strive to document and disclose all
source datasets used in the training process, enabling
better understanding and validation of the derived data.
Additionally, specific hyperparameters used for infer-
ence, specific class or prompt conditions, and every post-
processing step involved in creating the synthetic dataset
should be released along with the model or dataset
release, to ensure reproducibility and applicability of the
downstream work.68 Dataset documentation guidelines,
such as the STANDINGTogether guidelines published in
2024, should be adopted for synthetic data generation
models.69

Interpretability and explainability
As generative models become increasingly complex, their
interpretability and explainability will become more chal-
lenging. Understanding how these models learn and gen-
erate data is crucial for building trust in their outputs and
ensuring their safe and reliable use in medical imaging
research. Although some specific explainability methods
devised for generative models exist to ensure proper
understanding of input text or to add uncertainty measures
to the datasets, adaptation and evaluation of these methods
in medical imaging remains restricted.70,71

Potential biases
The use of synthetic datasets and generative models raises
important bias considerations. The potential for biases in
the source datasets getting propagated or amplified in the
generated data is a key concern.72 If the training data are
biased towards some demographics, pathologies, or
imaging protocols, then the resulting generated data could
perpetuate these biases, leading to skewed researchfindings
or discriminatory applications.25 For instance, historically,
many medical imaging datasets have under-represented
minoritised populations, resulting in artificial intelligence
systems with likely differential performance levels across
demographic groups.73 When representation is low, gen-
erative models could struggle to capture a true distribution
of these under-represented groups. However, a 2023 study
suggests that newer generative models can arrive at mean-
ingful representations from as few as 20 samples when the
overall dataset is sufficiently large to capture high-level
features.61 Mitigation strategies in this case include diver-
sity-aware sampling during training, adversarial debiasing
techniques, explicit fairness constraints inmodel objectives,
and leveraging the few-shot fine-tuning capabilities of
newer generative models.74 Researchers need to actively
assess and mitigate potential biases in the source data
and regularly audit the generated data for fairness and
representativeness.

Future directions
The field of generative artificial intelligence in medical
imaging is evolving rapidly, and several key areas of research
and development hold promise for advancing the capabil-
ities and applications of synthetic datasets and image gen-
erationmodels. One crucial direction is the development of
more robust and standardised evaluation frameworks that
consider the unique challenges and requirements of med-
ical imaging, including establishment of clinically relevant
metrics, benchmark datasets, and challenges concerning
comparative analysis and validation of different generative
models.75

Another important avenue is the exploration of novel
architectures and training strategies, such as hybridmodels
combining physics-informed and statistical approaches
with incorporation of domain-specific knowledge and con-
straints. Integration of generative models with other artifi-
cial intelligence techniques such as reinforcement and
active learning could enable the creation of personalised and
patient-specific datasets for precisionmedicine and targeted
treatment planning.76

Addressing the ethical and regulatory challenges sur-
rounding theuse of synthetic datasets and image generation
models is essential to realise their full potential, and
requires collaboration among researchers, clinicians, ethi-
cists, and policy makers to develop guidelines and best
practices for responsible use, data privacy, consent, and
accountability. Regulatory bodies, including the US Food
and Drug Administration (FDA) and the European Medi-
cines Agency, will play a crucial role in establishing

For more on C2PA, see
https://c2pa.org/

For SynthID, see https://
deepmind.google/science/

synthid/
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frameworks for validating and approving synthetic data for
clinical applications. Frameworks for evaluating synthetic
medical imaging are already emerging, as evidenced by the
FDA’s clearance of synthetic MRI technologies.77 These
technologies were regulated as image processing software
rather than as completely novel modalities, with the FDA
requiring extensive clinical validation to show that the
diagnostic performance of the radiologist remained
equivalent when using synthetic images versus conven-
tional images. This regulatory precedent suggests a pathway
for future synthetic data technologies: proof-of-performance
equivalence on standardised diagnostic tasks, rigorous
clinical validation with multiple readers, and postmarket
surveillance commitments to monitor for any divergence in
clinical outcomes.
In conclusion, derivative synthetic datasets and image

generation models have the potential to change medical
imaging research and clinical practice. Addressing the
challenges associatedwith them, establishing best practices,
and investing in research and innovation can help to
harness the full potential of generative artificial intelligence
in improving patient care, advancing scientific discovery,
and transforming the landscape of medical imaging.
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